4,471 research outputs found

    Clifford Multivector Toolbox (for MATLAB)

    Get PDF
    matlab Âź is a numerical computing environment oriented towards manipulation of matrices and vectors (in the linear algebra sense, that is arrays of numbers). Until now, there was no comprehensive toolbox (software library) for matlab to compute with Clifford algebras and matrices of multivectors. We present in the paper an account of such a toolbox, which has been developed since 2013, and released publically for the first time in 2015. The paper describes the major design decisions made in implementing the toolbox, gives implementation details, and demonstrates some of its capabilities, up to and including the LU decomposition of a matrix of Clifford multivectors

    Analytic Metaphysics versus Naturalized Metaphysics: The Relevance of Applied Ontology

    Get PDF
    The relevance of analytic metaphysics has come under criticism: Ladyman & Ross, for instance, have suggested do discontinue the field. French & McKenzie have argued in defense of analytic metaphysics that it develops tools that could turn out to be useful for philosophy of physics. In this article, we show first that this heuristic defense of metaphysics can be extended to the scientific field of applied ontology, which uses constructs from analytic metaphysics. Second, we elaborate on a parallel by French & McKenzie between mathematics and metaphysics to show that the whole field of analytic metaphysics, being useful not only for philosophy but also for science, should continue to exist as a largely autonomous field

    Price Setting in the Euro Area: Some Stylized Facts from Individual Consumer Price Data.

    Get PDF
    This paper documents patterns of price setting at the retail level in the euro area. A set of stylized facts on the frequency and size of price changes is presented along with an econometric investigation of their main determinants. Price adjustment in the euro area can be summarized in six stylized facts. First, prices of most products change rarely. The average monthly frequency of price adjustment is 15 p.c., compared to about 25 p.c. in the US. Second, the frequency of price changes is characterized by substantial cross-product heterogeneity and pronounced sectoral patterns: prices of (oil-related) energy and unprocessed food products change very often, while price adjustments are less frequent for processed food products, non-energy industrial goods and services. Third, cross-country heterogeneity exists but is less pronounced. Fourth, price decreases are not uncommon. Fifth, price increases and decreases are sizeable compared to aggregate and sectoral inflation rates. Sixth, price changes are not highly synchronized across price-setters. Moreover, the frequency of price changes in the euro area is related to a number of factors, in particular seasonality, outlet type, indirect taxation, use of attractive prices as well as aggregate or product-specific inflation.Price-setting ; consumer price ; frequency of price change.

    Properties of a general quaternion-valued gradient operator and its applications to signal processing

    Get PDF
    The gradients of a quaternion-valued function are often required for quaternionic signal processing algorithms. The HR gradient operator provides a viable framework and has found a number of applications. However, the applications so far have been limited to mainly real-valued quaternion functions and linear quaternionvalued functions. To generalize the operator to nonlinear quaternion functions, we define a restricted version of the HR operator, which comes in two versions, the left and the right ones. We then present a detailed analysis of the properties of the operators, including several different product rules and chain rules. Using the new rules, we derive explicit expressions for the derivatives of a class of regular nonlinear quaternion-valued functions, and prove that the restricted HR gradients are consistent with the gradients in the real domain. As an application, the derivation of the least mean square algorithm and a nonlinear adaptive algorithm is provided. Simulation results based on vector sensor arrays are presented as an example to demonstrate the effectiveness of the quaternion-valued signal model and the derived signal processing algorithm

    Filtering and Tracking with Trinion-Valued Adaptive Algorithms

    Get PDF
    A new model for three-dimensional processes based on the trinion algebra is introduced for the first time. Compared with the pure quaternion model, the trinion model is more compact and computationally more efficient, while having similar or comparable performance in terms of adaptive linear filtering. Moreover, the trinion model can effectively represent the general relationship of state evolution in Kalman filtering, where the pure quaternion model fails. Simulations on real-world wind recordings and synthetic data sets are provided to demonstrate the potentials of this new modeling method

    Rapid measurement of intravoxel incoherent motion (IVIM) derived perfusion fraction for clinical magnetic resonance imaging

    Get PDF
    Objective This study aimed to investigate the reliability of intravoxel incoherent motion (IVIM) model derived parameters D and f and their dependence on b value distributions with a rapid three b value acquisition protocol. Materials and methods Diffusion models for brain, kidney, and liver were assessed for bias, error, and reproducibility for the estimated IVIM parameters using b values 0 and 1000, and a b value between 200 and 900, at signal-to-noise ratios (SNR) 40, 55, and 80. Relative errors were used to estimate optimal b value distributions for each tissue scenario. Sixteen volunteers underwent brain DW-MRI, for which bias and coefficient of variation were determined in the grey matter. Results Bias had a large influence in the estimation of D and f for the low-perfused brain model, particularly at lower b values, with the same trends being confirmed by in vivo imaging. Significant differences were demonstrated in vivo for estimation of D (P = 0.029) and f (P < 0.001) with [300,1000] and [500,1000] distributions. The effect of bias was considerably lower for the high-perfused models. The optimal b value distributions were estimated to be brain500,1000, kidney300,1000, and liver200,1000. Conclusion IVIM parameters can be estimated using a rapid DW-MRI protocol, where the optimal b value distribution depends on tissue characteristics and compromise between bias and variability

    Simple and Reliable Determination of Intravoxel Incoherent Motion Parameters for the Differential Diagnosis of Head and Neck Tumors

    Get PDF
    Intravoxel incoherent motion (IVIM) imaging can characterize diffusion and perfusion of normal and diseased tissues, and IVIM parameters are authentically determined by using cumbersome least-squares method. We evaluated a simple technique for the determination of IVIM parameters using geometric analysis of the multiexponential signal decay curve as an alternative to the least-squares method for the diagnosis of head and neck tumors. Pure diffusion coefficients (D), microvascular volume fraction (f), perfusion-related incoherent microcirculation (D), and perfusion parameter that is heavily weighted towards extravascular space (P) were determined geometrically (Geo D, Geo f, and Geo P) or by least-squares method (Fit D, Fit f, and Fit D) in normal structures and 105 head and neck tumors. The IVIM parameters were compared for their levels and diagnostic abilities between the 2 techniques. The IVIM parameters were not able to determine in 14 tumors with the least-squares method alone and in 4 tumors with the geometric and least-squares methods. The geometric IVIM values were significantly different (p<0.001) from Fit values (+2±64% and 7±24% for D and f values, respectively). Geo D and Fit D differentiated between lymphomas and SCCs with similar efficacy (78% and 80% accuracy, respectively). Stepwise approaches using combinations of Geo D and Geo P, Geo D and Geo f, or Fit D and Fit Ddifferentiated between pleomorphic adenomas, Warthin tumors, and malignant salivary gland tumors with the same efficacy (91% accuracy = 21/ 23). However, a stepwise differentiation using Fit D and Fit f was less effective (83% accuracy = 19/23). Considering cumbersome procedures with the least squares method compared with the geometric method, we concluded that the geometric determination of IVIM parameters can be an alternative to least-squares method in the diagnosis of head and neck tumors

    The Data Quality Monitoring for the CMS Silicon Strip Tracker

    Get PDF
    The CMS Silicon Strip Tracker (SST), consisting of more than 10 million channels, is organized in about 15,000 detector modules and it is the largest silicon strip tracker ever built for high energy physics experiments. The Data Quality Monitoring system for the Tracker has been developed within the CMS Software framework. More than 100,000 monitorable quantities need to be managed by the DQM system that organizes them in a hierarchical structure reflecting the detector arrangement in subcomponents and the various levels of data processing. Monitorable quantities computed at the level of individual detectors are processed to extract automatic quality checks and summary results that can be visualized with specialized graphical user interfaces. In view of the great complexity of the CMS Tracker detector the standard visualization tools based on histograms have been complemented with 2 and 3 dimensional graphical images of the subdetector that can show the whole detector down to single channel resolution. The functionalities of the CMS Silicon Strip Tracker DQM system and the experience acquired during the SST commissioning will be described
    • 

    corecore